Carbon grains around evolved stars

The Nanocosmos team published in October 21, 2019, at Nature Astronomy (available free at Europe PubMed Central), the results of a set of laboratory experiments showing that gas-phase chemistry, under conditions similar to those of a red giant star environment, can produce very efficiently small amorphous carbon grains and carbon chains similar to those found in oil.

Stardust, an ultra-high vacuum machine built in the ERC Nanocosmos project (a Synergy project funded by the European Research Council), was specifically conceived to simulate, with a high level of control, the complex conditions of stardust formation and processing in the environment of evolved stars. In addition, the AROMA setup was built to analyse the molecular content of the samples synthesized by Stardust.

In the words of José Ángel Martín-Gago (Institute of Materials Science of Madrid, ICMM-CSIC, Spain), responsible for the Stardust instrument, “Mimicking the conditions of the envelope of an evolved star, laboratory experiments allow scientists to follow, step by step, the formation process of dust grains, from atoms to simple molecules and their growth to more complex clusters of molecules.”

For José Cernicharo (Institute of Fundamental Physics, IFF-CSIC, Spain), lead co-investigator of the project together with Martín-Gago and Christine Joblin (Institut de Recherche en Astrophysique et Planétologie, IRAP-CNRS, France), “That process is important because those grains of dust, which emerge from the final stages of the evolution of medium-sized stars like our Sun will provide the fundamental pieces needed for the birth of the planets and the main ingredients for the onset of life once injected into the interstellar medium.”

This is why it is essential to develop experiments combining laboratory astrophysics, surface science and astronomical observations to unveil the chemical routes that operate in the inner layers of the envelope of evolved stars.

The results obtained show the formation of amorphous carbon nanograins and aliphatic carbon clusters with traces of aromatic species and no fullerenes. This shows that the latter species cannot form effectively by gas-phase condensation at these temperatures in the zone of the evolved star where the dust is formed, a region that extends up to a few stellar radii.

Chemical complexity

Carbon dust analogues were produced in Stardust and analysed with several characterization techniques including Scanning Tunneling Microscopy and mass spectrometry with the AROMA setup. To produce them only gas carbon atoms and molecular hydrogen were used in a ratio close to that in the atmospheres of AGB stars.

The results showed two types of products: amorphous carbonaceous nanograins – the most abundant, considered to be the main component of carbonaceous star dust – and aliphatic carbon groups. But almost no aromatic molecules were found in the analysis.

According to Joblin, “Polycyclic aromatic hydrocarbons (PAHs) are widespread in massive star-forming regions and in carbon-rich protoplanetary and planetary nebulae. Large carbonaceous molecules like buckminsterfullerene C60 have also been detected in some of these environments. But it seems that they need different conditions to be formed”.

One possible pathway could be through thermal processing of aliphatic material on the surface of dust, which could take place as a result of the significant rise in the temperature of nanograins that occurs in highly UV-irradiated environments. Those results give us new insights into the chemistry of carbonaceous stardust seed formation and foster new observations in order to constrain the physical and chemical conditions in the inner shells of the envelops of evolved stars.

About the ERC

The European Research Council, set up by the European Union in 2007, is the premier European funding organisation for excellent frontier research. Every year it selects and funds the very best, creative researchers of any nationality and age to run projects based in Europe. The ERC has three grant schemes for individual principal investigators – Starting Grants, Consolidator Grants, and Advanced Grants – and Synergy Grants for small groups of excellent researchers.

To date, the ERC has funded more than 9,000 top researchers at various stages of their careers, and over 50,000 postdoctoral fellows, PhD students and other staff working in their research teams. The ERC strives to attract top researchers from anywhere in the world to come to Europe.

The ERC is led by an independent governing body, the Scientific Council. The ERC current President is Professor Jean-Pierre Bourguignon. The ERC has an annual budget of €2 billion for the year 2019. The overall ERC budget from 2014 to 2020 is more than €13 billion, as part of the Horizon 2020 programme, for which European Commissioner for Research, Innovation and Science Carlos Moedas is currently responsible.

AROMA Setup First Results

The AROMA Setup

In the framework of the Nanocosmos ERC synergy project, a new analytical experimental setup called AROMA (Astrochemistry Research of Organics with Molecular Analyzer) was developed. The main purpose of this setup is to study and identify, with micro-scale resolution, the molecular content of cosmic dust analogues, including the stardust analogues that will be produced in the Nanocosmos Stardust machine in Madrid. AROMA combines laser desorption/ionization (LDI) techniques with a linear ion trap coupled to an orthogonal time of flight mass spectrometer (LQIT-oTOF). A first paper “Identification of PAH Isomeric Structure in Cosmic Dust Analogues: the AROMA setup” has just been published in The Astrophysical Journal. This is the first time that two-step LDI is coupled to a linear ion trap with MS/MS capabilities. In MS/MS experiments ions are first stored in a trap and then are fragmented under the action of photon or collision activation. The resulting fragments are then detected by mass spectrometry providing information on the molecular structure of the parent species.

The article presents the performances of AROMA with its ability to detect with very high sensitivity aromatic species in complex materials of astrophysical interest and characterize their structures. A two-step LDI technique was used, in which desorption and ionization are achieved using two different lasers which are separated in time and space. The tests performed with pure polycyclic aromatic hydrocarbon (PAH) samples have shown a limit of detection of 100 femto-grams, which corresponds to 2×108 molecules in the case of coronene (C24H12). We detected a mixture of PAH small and medium-sized PAHs in the Murchison meteorite that contains a complex mixture of extraterrestrial organic compounds. In addition, collision induced dissociation experiments were performed on selected species detected in Murchison, which led to the first firm identification of pyrene (C16H10) and its methylated derivatives in this sample.

AROMA setup, being highly sensitive, selective, spatially resolved, and owing the MS/MS capabilities enables unique chemical characterization of aromatic species in cosmic dust analogues and extraterrestrial samples. Changing the ionization source will enlarge the scope of investigated chemical species. In the future, it will be used to analyze samples from the Stardust machine, other laboratory analogues and cosmic materials such as meteorites, and interplanetary dust particles. Currently, we are developing an imaging source that will allow us to analyze samples using LDI with micrometer spatial resolution.

More information:

This research was presented in the paper “Identification of PAH Isomeric Structure in Cosmic Dust Analogs: The AROMA Setup“, published in the Astrophysical Journal (APJ), 843:34 (8pp), 2017 July 1.  The authors are Hassan Sabbah (Université de Toulouse, UPS-OMP, Institut de Recherche en Astrophysique et Planétologie (IRAP); CNRS, IRAP; LCAR, Université de Toulouse, UPS-IRSAMC, CNRS, France), Anthony Bonnamy (Université de Toulouse, UPS-OMP, IRAP; CNRS, IRAP, France), Dimitris Papanastasiou (Fasmatech Science + Technology, Greece), Jose Cernicharo (Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Spain), Jose-Angel Martín-Gago (ICMM-CSIC, Spain), and Christine Joblin (Université de Toulouse, UPS-OMP, IRAP; CNRS, IRAP, France).

ECLA 2016 – webpage open

Ecla2016-1125x510

The second announcement of the European Conference on Laboratory Astrophysics – “Gas on the Rocks” – ECLA 2016 has been issued today.  This conference will be held at the CSIC headquarters (Madrid, Spain) in November 21 – 25, 2016. The webpage is open with all the relevant information.

www.ecla2016.com

More than 30 invited researchers will address new insights on the following science topics:

  • Comets, asteroids, meteorites and the primitive Solar System nebula: formation and evolution
  • Protoplanetary disks and planet formation
  • Planet, Moon, and exoplanet surfaces and atmospheres
  • The signatures of the evolving interstellar medium
  • Dense Clouds: the gas-ice interface and molecular complexity
  • Chemical fingerprints of star formation
  • The late stages of star evolution: dust formation
  • Supernovae and shocks: high-energy processing of matter

NANOCOSMOS will organize the ECLA2016 – Gas on the Rocks conference

Stardustiram_PdV

The European Conference on Laboratory Astrophysics – Gas on the Rocks (ECLA2016) will be held at the CSIC headquarters in Madrid on November 21 – 25, 2016.

The conference will address the state of the art in laboratory astrophysics within the context of new astrophysical data and to improve communication and collaboration between astrophysicists, physicists and (geo) chemists. Hence, the conference structure will consist of invited talks presenting topics in astrophysics and planetary science and related laboratory astrophysics activities. Contributing talks will be selected to complement the topics from the astrophysical, laboratory, and theoretical/modeling points of view.

More info here

 

First light of the AROMA experimental set-up in Toulouse

The AROMA (Astrochemical Research of Organics using Molecular Analyzer) experimental set-up has seen the first light by showing nice peaks of C60 and its 13C isomers in Toulouse. The AROMA main purpose is to analyze the molecular content of cosmic dust particles, more specifically stardust analogues that will be produced in the Nanocosmos Stardust machine in Madrid.

See the NANOCOSMOS video on the start of the AROMA experimental set-up.

The AROMA experimental set-upThe central part of AROMA arrived from Greece at the University Toulouse III – Paul Sabatier (France) on September 18th 2015. The construction was performed by Fasmatech, a young Greek company, following requirements from the IRAP scientific team. It consists of a linear ion trap combined with a high-resolution time of flight mass spectrometer. After months of development, the setup was delivered on time in Toulouse at the laboratory LCAR. Only two days later, a first light could be obtained. The laser desorption ionization of fullerene showed nice peaks of C60 and its 13C isomers. Further optimization of the signal was performed on the next days and this will continue in the coming weeks. The IRAP team is also working on combining the two steps laser desorption laser ionization source to the instrument. The objective is to analyze the molecular organic phase at a micron scale.

NANOCOSMOS astronomers will map Orion with SOFIA

A legacy program to map the far-IR fine structure line of C+ at 158 microns with the Stratospheric Observatory for Infrared Astronomy (SOFIA) has been recently awarded to a small international team led by Prof. Tielens (Leiden Observatory, The Netherlands) and including 3 members of the NANOCOSMOS project, Dr. J. R. Goicoechea (ICMM-CSIC), Dr. O. Berné (IRAP, CNRS) and Prof. J. Cernicharo (ICMM-CSIC). The observing time to map the Orion molecular cloud will be more than 50 hours, which means several flights on board SOFIA!!

[CII] 158μm emission image taken by Herschel with the locations of famous regions in the cloud identified (Goicoechea et al. 2015)
[CII] 158μm emission image taken by Herschel with the locations of famous regions in the cloud identified (Goicoechea et al. 2015). SOFIA will map an area 20 times larger than the region covered by Herschel.

The ionized carbon emission dominates the gas cooling of the low density interstellar medium and it is the brightest emission line in the IR spectrum of galaxies. In the next 2 years, astronomers will use the instrument upGREAT flying on board SOFIA to map an area of more than 20 times the central region of Orion recently observed with the Herschel Space Telescope (Goicoechea et al. 2015, ApJ, 812, 75, see the publications section). This project will allow to uniquely determine the use of the C+ line as a star formation rate indicator, derive the amount of molecular cloud mass not measured by CO (so-called “CO-dark” gas), and semi-empirically determine the photo-electric heating efficiency on Polycyclic Aromatic Hydrocarbons (PAHs) and interstellar dust grains.

The Stratospheric Observatory For Infrared Astronomy (SOFIA) is a joint project between NASA and the German Aerospace Center (DLR) consisting of a custom-modified Boeing 747SP aircraft with an effective aperture of 2.5 m mounted in an open cavity towards the tail of the aircraft.

SOFIA air-to-air over the Sierra Nevada Mountains (Credit: NASA, USRA (Universities Space Research Association), and L-3 Communications Integrated Systems/Jim Ross)
SOFIA air-to-air over the Sierra Nevada Mountains (Credit: NASA, USRA (Universities Space Research Association), and L-3 Communications Integrated Systems/Jim Ross)

Nick Cox at The Physics of Evolved Stars (POE2015) conference

nanocosmos_general_poster_final

The Nanocosmos project was presented at The Physics of Evolved Stars (POE2015) conference by Nanocosmos astronomer Dr. Nick Cox on behalf of the three PIs. This international meeting, held from 8-12 June in Nice, France, was organised to honour Dr. Olivier Chesneau (Observatoire de Nice) who passed away in 2014. Presentations at the meeting covered the broad range of scientific interests of Olivier: from AGB stars, Planetary Nebulae, R CrB stars, Novae, Symbiotic systems, and many more. Many presentations at this meeting centred on understanding the formation and presence of dust and molecules in circumstellar environments of both low- and high-mass evolved stellar systems, topics of particular interest to Nanocosmos researchers.

High-Resolution Submillimeter Spectroscopy of the Interstellar Medium and Star Forming Regions — From Herschel to ALMA and Beyond (Zakopane, Poland, May 12 – 16, 2015)

copyright © : Subaru Telescope, National Astronomical Observatory of Japan (NAOJ)
copyright © : Subaru Telescope, National Astronomical Observatory of Japan (NAOJ)

Two NANOCOSMOS members, Prof. José Cernicharo and Dr. Javier R. Goicoechea gave two invited talks at this workshop in Poland. José Cernicharo showed the NANOCOSMOS latests results from the ALMA observations of the archetypical AGB carbon-star IRC+10216. The NANOCOSMOS team has published 4 articles (see publications) on these results (including IRAM observations) and new exciting results are expected for the coming months. Javier R. Goicoechea talked about the velocity-resolved [CII] emission and [CII]/FIR mapping along Orion. The [CII] 158μm fine structure line is arising in gas irradiated by UV-photons from the Trapezium cluster and contributes significantly to the cooling of the cold neutral medium. These observations in combination with Far-Infrared photometric images of the dust emission and maps of the H41α hydrogen recombination and CO provide an unprecedented close view (0,16 light-years in resolution) of the Orion Cloud surrounding the Trapezium. Stay tuned¡

NANOCOSMOS workshops/meetings

2017

NANOCOSMOS Interstellar Dust Meeting

Date: 12 – 13 June 2017

Place: Université Paul Sabatier (Toulouse, France)

Key dates: 

Abstract submission deadline: April 30th, 2017

Registration deadline: May 14th, 2017

Webpage: https://epolm3-nanocosm.sciencesconf.org/

2016

European Conference on Laboratory AstrophysicsGas on the Rocks (ECLA2016)

Outcome of the conference: See “A summary of the ECLA2016” link

November 21 – 25, 2016 (CSIC Headquarters, Madrid, Spain)

Webpage: ECLA2016

FIRST ANNOUNCEMENT

Key dates:
Second announcement:  February 1st, 2016 (opening of the conference web page).
Deadline for abstract submission: June 15, 2016
Deadline for early registration: July 15, 2016
Deadline for information participants about selected contributing talks: June 30, 2016
Final program: July 15, 2016
Last announcement with final details: November 1st, 2016

Motivation:

Over the last decade, European research activities in the field of laboratory astrophysics have experienced an impressive increase in their potential to address astrophysical problems, in particular by providing essential information on the physical and chemical processes leading to chemical complexity in space resulting in star and planet formation. These activities have been motivated by the interpretation of astronomical observations obtained with single dish telescopes and short baseline interferometers. The wealth of data obtained with ALMA, space facilities (Herschel, Spitzer, Rosetta, the coming JWST, E-ELT), and other ground based observatories (VLTI, NOEMA, …), require new methodologies for the astrophysical modeling that will lead to new challenges for laboratory astrophysics.

This conference aims to address the state of the art in laboratory astrophysics within the context of these new astrophysical data and to improve communication and collaboration between astrophysicists, physicists and (geo) chemists. Hence, the conference structure will consist of invited talks presenting topics in astrophysics and planetary science and related laboratory astrophysics activities. Contributing talks will be selected to complement the topics from the astrophysical, laboratory, and theoretical/modeling points of view.

The astrophysical areas that will be addressed are:

Comets, asteroids, meteorites and the primitive Solar System nebula: formation and evolution
Protoplanetary disks and planet formation
Planet, Moon, and exoplanet surfaces and atmospheres
The signatures of the evolving interstellar medium
Dense Clouds: the gas-ice interface
Chemical fingerprints of star formation
The late stages of star evolution: dust formation
Supernovae and shocks: high-energy processing of matter

The conference will cover studies in many fields such as spectroscopy, analytical (geo) chemistry, reactivity, nanoscience, and quantum chemistry, pertaining to different matter components (gas, plasma, PAHs, ices, dust, solid surfaces, …).

SOC composition
Jose Cernicharo (chair). ICMM-CSIC, Madrid, Spain
Christine Joblin (co-chair). IRAP, Univ. Paul Sabatier/CNRS, Toulouse, France
Isabel Tanarro. IEM-CSIC, Madrid, Spain
Jose Angel Martín Gago. ICMM-CSIC, Madrid, Spain
Karine Demyk. IRAP, Univ. Paul Sabatier/CNRS, Toulouse, France
Jean-Hugues Fillion. LERMA, UPCM Univ.  Paris 06, & Obs. Paris, France
Maria Elisabetta Palumbo. INAF-Catania Astrophysical Obs., Italy
André Canosa. IPR, Univ. Rennes 1/CNRS, France
Harold Linnartz. Leiden Obs., Univ. of Leiden, The Netherlands
Liv Hornekaer. iNANO, Aarhus Univ., Danemark
Peter Sarre. School of Chemistry, Nottingham Univ., UK
Stephan Schlemmer. Phys. Inst., Univ. Koln, Germany
Jonathan Tennyson. Univ. College London, UK
Yves Marrochi. CRPG-CNRS, Nancy, France
Guillermo Muñoz Caro. CAB, INTA-CSIC, Madrid, Spain

LOC composition
Isabel Tanarro (Chair). IEM-CSIC, Madrid, Spain
Belén Maté. IEM-CSIC, Madrid, Spain
Víctor J. Herrero. IEM-CSIC, Madrid, Spain
José Luis Doménech. IEM-CSIC, Madrid, Spain
Ángel González-Valdenebro. IEM-CSIC, Madrid, Spain
Marcelo Castellanos (co-chair). ICMM-CSIC, Madrid, Spain
Belén Tercero.  ICMM-CSIC, Madrid, Spain
Juan Ramón Pardo. ICMM-CSIC, Madrid, Spain
Juan Antonio Corbalán. ICMM-CSIC, Madrid, Spain
Natalia Ruiz-Zelmanovich. ICMM-CSIC, Madrid, Spain

Kick-off meeting

A two-day meeting (May 5 and 6, 2015) will be held at the Spain National Research Council (CSIC) headquarters in Madrid. This meeting will be focused in well targetted presentations to put forward the main goals of the project and to foster further team discussions and brainstorming. The meeting will be divided into 4 sessions covering the following topics:

  • May 5 (09:30 to 10:30) General overview of the project
  • May 5 (10:30 to 13:00) Dust formation (observations, spectroscopy, chemical modelling and nucleation)
  • May 5 (15:00 to 17:30) Dust analysis (analogs, experimental techniques)
  • May 6 (09:00 to 13:30) Dust spectroscopy (astrophysical conditions) and processes (photo/thermo-processing, gas-grain interactions)
  • May 6 (15:00 to 17:00) Technical session (engineering, vacuum)
  • May 6 (17:30 to 18:30) Summary of the PIs

The final program will be posted here when available.

Meeting place and travel

The meeting will take place at the CSIC Press Room in C/ Serrano 113 (Building 113). See both the general map around CSIC and map of CSIC headquarters. See also an underground (“Metro”) map or visit this link to consult the Madrid metro in different formats.

CSIC headquarters is pretty near both from the República Argentina (line 6) and Gregorio Marañón (line 7) metro stations. The Nuevos Ministerios metro station, which connects to all the airport terminals, is 1.5 km away. These items can be checked at the general map around CSIC above.

Metro fares can be consulted here

If you consider to take a taxi from/to the airport, please visit this site. Official taxi fares can also be consulted here.

Recommended hotels
Both the NH Breton Hotel and the NH Madrid Zurbano Hotel are located pretty near from the CSIC headquarters (1 km away). Prices for a single room are around 80 euros per night.