The documentary about NANOCOSMOS nominated for BICC awards

BICC is the acronym for “XXIX Bienal Internacional de Cine Científico Ronda-Madrid-México 2018”, the biennial international event for science movies. Our documentary “NANOCOSMOS: Un viaje a lo pequeño” has been selected as finalist in this contest within the category of “Science documentary”.

We are very proud to do our bit in science communication!  Even if we don’t get any prize, we acknowledge the jury for considering our movie for the contest.  We will stay tuned for the date of the ceremony. Let’s cross fingers!

Link to the BICC press release (in Spanish).

Horizon Europe: The New Search and Innovation Framework Programme: Challenges and Opportunities

Next week NANOCOSMOS will be in the workshop “Horizon Europe: The New Search and Innovation Framework Programme: Challenges and Opportunities“, organized in the Universidad Menéndez Pelayo (UIMP) by the Ministry of Science, Innovation and Universities and the Spanish Science Research Council (CSIC) . With several panels, this meeting joins some of the relevant scientific and industrial players around new opportunities and challenges in Horizon Europe for the period 2021-2027. The program of the meeting overviews the three major pillars of the Commission’s proposal, covering all forms of innovation, global challenges through research and innovation for the uptake of innovative solutions in industry and society, as well as investigator driven high quality research and infrastructures.  NANOCOSMOS will be represented by one of its Principal Investigators, José Cernicharo, in the panel “The ERC in Horizon Europe – A Reflection on
Interdisciplinarity and Multipotentialities.”

The starting signal to unveil the formation of dust grains in AGB stars

The Stardust machine has been constructed to simulate the formation of dust grains in the atmospheres of Asymptotic Giant Branch Stars (AGBs), their evolution and further interaction with the ambient UV radiation.

On May 8, 2018, the first paper on the NANOCOSMOS Stardust machine has been published at the “Scientific Reports” journal (Scientific Reports, volume 8, Article number: 7250 (2018)).
After almost 4 years of hard work at the Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), the article comprises the stages of the design, development, commissioning and first-light experiments of this innovative experimental station.

Stardust integrates a precise tool to fabricate high quantities of complex nanoparticles, perform in-flight manipulation and in-situ characterization, all through five Ultra-High Vacuum (UHV) modules assembled. The article presents the precise fabrication, manipulation and in-situ analysis of Cu nanoparticles, as part of the commissioning of the machine.

To the best of our knowledge, several milestones have been achieved, such as:
– The new design of the scaled-up Multiple Ion Cluster Source (MICS) addresses a significant step-forward towards industrial implementation of gas aggregation sources, for applications with special requirements such as controlled purity, size distribution, stoichiometry and structure of the nanoparticles.
– First-time accurate control of the Cu oxidation state through reactive sputtering using gas aggregation sources that avoids poisoning of the target by injecting large amounts of oxygen.
– Integration of several techniques that combine the fine control of nanoparticle fabrication with high throughputs, in-flight manipulation (i.e.: gas injection at different stages, heating, accelerating, …) and in-situ characterization (electron spectroscopy techniques and thermal desorption spectroscopy).

More information:

This research was presented in the paper “Precisely controlled fabrication, manipulation and in-situ analysis of Cu based nanoparticles“, published in Scientific Reports 8, 7250 (13pp), 2018 May 8. The authors are: Lidia Martínez (Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Madrid, Spain), Koen Lauwaet (ICMM-CSIC), Gonzalo Santoro (ICMM-CSIC), Jesús M. Sobrado (Centro de Astrobiología, CSIC-INTA, Torrejón de Ardoz, Spain), Ramón J. Peláez (Instituto de Estructura de la Materia, IEM-CSIC, Madrid, Spain), Víctor J. Herrero (IEM-CSIC), Isabel Tanarro (IEM-CSIC), Gary J. Ellis (Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Madrid, Spain), José Cernicharo (Instituto de Física Fundamental, IFF-CSIC, Madrid, Spain), Christine Joblin (Université de Toulouse, UPS-OMP, IRAP; CNRS, IRAP, Toulouse, France), Yves Huttel (ICMM-CSIC) and Jose Angel Martín-Gago (ICMM-CSIC).

Ve la luz el documental “Nanocosmos: un viaje a lo pequeño”

ENGLISH VERSION BELOW

El documental, que cuenta en formato road-movie los entresijos del nacimiento de los granos de polvo en el espacio, está financiado por la Fundación Española para la Ciencia y la Tecnología – Ministerio de Economía, Industria y Competitividad y el Consejo Superior de Investigaciones Científicas (CSIC) y ha sido producido por la empresa LuzLux.

Tras seis meses de trabajo, el equipo formado por personal de CSIC y la productora LuzLux, entre otros, ha finalizado el documental “Nanocosmos: un viaje a lo pequeño”, una película de carretera que habla del reto tecnológico y humano que hay tras el desarrollo de instrumentación en el área de la astrofísica de laboratorio.

La historia se desarrolla en tres planos: el viaje del equipo de grabación desde Madrid hasta Toulouse, los experimentos de laboratorio explicados por sus responsables y el propio viaje de los granos de polvo cósmico desde que nacen en la envoltura de una estrella evolucionada hasta que pasan a formar parte de algo mucho más grande (una estrella, un planeta o, por qué no, un ser vivo).

Este trabajo quiere transmitir las expectativas de los equipos que luchan por comprender este proceso, el reto tecnológico y humano que supone construir máquinas complejas y lograr reproducir en un laboratorio lo que ocurre en el espacio. El documental, de 40 minutos de duración, circulará por circuitos de cine científico y canales específicos de divulgación científica durante un año, tras lo que estará disponible en la página web de Nanocosmos.

En este enlace podrán ver el tráiler que anuncia el documental, que está disponible en español  con subtítulos en inglés y en francés. También hay una versión con subtítulos en español para personas con discapacidad auditiva.

ENGLISH VERSION

After six months of work, the team formed by CSIC staff and the LuzLux production company, among others, has completed the documentary “Nanocosmos, un viaje a lo pequeño” (a journey to the origins of dust grains), a road movie which talks about the technological and human challenge that lies behind the development of instruments in the area of Laboratory Astrophysics.

The story unfolds in three levels: the journey of the recording team from Madrid (Spain) to Toulouse (France), the laboratory experiments explained by its principal investigators and the journey of the cosmic dust grains since they are born in the envelope of an evolved star until they become part of something bigger (a star, a planet or, why not, a living being).

This work wants to transmit the expectations of the teams struggling to understand this process, the technological and human challenge involved in building complex machines whith a goal: to reproduce in a laboratory what happens in space. The 40-minute documentary will circulate along circuits of scientific movies and specific science channels for a year, and after that it will be available on the Nanocosmos’ website.

In this link you can see the trailer announcing the documentary. The movie is available in Spanish with subtitles in English and French.

Astrochemistry Insights in Science Magazine, by Christine Joblin and José Cernicharo

Cone Nebula (NGC 2264) Credits: NASA, H. Ford (JHU), G. Illingworth (UCSC/LO), M.Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA.

Detecting the building blocks of aromatics” is the title of this “Insight” written by Christine Joblin and José Cernicharo (both NANOCOSMOS PIs together with J.A. Martín Gago) and talking about the history and importance of the work published by Brett A. McGuire et al. (“Detection of the aromatic molecule benzonitrile (c-C6H5CN) in the interstellar medium“) in the “Science Magazine” (12/01/2018).

This is the summary of the article from C. Joblin and J. Cernicharo:

“Interstellar clouds are sites of active organic chemistry. Many small, gasphase molecules are found in the dark parts of the clouds that are protected from ultraviolet (UV) photons, but these molecules photodissociate in the external layers of the cloud that are exposed to stellar radiation (see the photo). These irradiated regions are populated by large polycyclic aromatic hydrocarbons (PAHs) with characteristic infrared (IR) emission features. These large aromatics are expected to form from benzene (C6H6), which is, however, difficult to detect because it does not have a permanent dipole moment and can only be detected via its IR absorption transitions against a strong background source (2). On page 202 of this issue, McGuire et al. (3) report the detection of benzonitrile (c-C6H5CN) with radio telescopes. Benzonitrile likely forms in the reaction of CN with benzene; from its observation, it is therefore possible to estimate the abundance of benzene itself”.

 

Christine Joblin in a Nanocosmos illustrated talk

Last Saturday, the 2nd edition of the “Illustrated talks” organized by ERCcOMICS took place at Jussieu Campus in Paris with the artist Lorenzo Palloni and the researcher Christine Joblin (one of our Principal Investigators) in the “Fête de la Science 2017” (Science Party). It was an amazing opportunity to share the astronomy and astrophysics behind the Nancosmos project, that has already a comic inspired in its science. This “Fête de la Science” is a celebration of science and technology and thousands of individuals get involved, providing general public the opportunity to discover the wonders of science. “Illustrated talks” are talks where the artist illustrates the scientist live while talking about the project. Congratulations for this outreach initiative!

Watch the full illustrated talk (in french) by Christine Joblin (research director at CNRS Toulouse) & comics artist Lorenzo Palloni at the Fête de la Science in PARIS, Campus de Jussieu, on the 14th of October 2017.

Here, some pictures from the 2nd edition of the illustrated talks with the artist Lorenzo Palloni and the researchers Christine Joblin (ERC Nanocosmos).

Christine Joblin, one of Nanocosmos’ Principal Investigators, participates in an illustrated talk during the “Fête de la Science” last 14th of October in Paris.

“Estrella” (Star in Spanish) is the name of the comic inspired by Nanocosmos.

Christine Joblin during the illustrated talk in Paris.

Lorenzo Palloni is the artist that gave life to the comic inspired by Nanocosmos “Estrella” and draw the stories live during the illustrated talk.

NANOCOSMOS post-doctoral position at the Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC, Madrid, Spain) in the field of laboratory astrophysics and surface science

Within the framework of the ERC-Synergy “Nanocosmos” project, we are seeking a senior post-doctoral researcher to work on: “Laboratory astrophysics simulation experiments using the Stardust machine”.

The candidate should have a strong expertise in some of the following fields: Laboratory Astrophysics, Surface Science (fundamentals and techniques), Ultra-High Vacuum systems (use and engineering), nanoparticle growth and solid-phase Physical-Chemistry. A good record of publications in peer-reviewed journals is a strong asset. The successful candidate will participate in on-going operations of the Stardust machine, being an interface between astrophysicists and surface scientists. The applicant must have an excellent knowledge in English, both written and spoken. The position will be filled for a fixed term of 2 years with a possible renewal until the end of the project in July 2020. The starting date of the position will be as soon as possible.

Applications. If you are interested in this position, please submit your CV together with a motivation letter and a recommendation letter, ALL IN ONE SINGLE PDF FILE, at the latest by the 15th of October, to: Prof. J. A. Martín-Gago (gago at icmm.csic.es)

The “Stardust” machine is an innovative experimental station devoted to the production, processing and in-situ analysis of any type of cluster or nanoparticle made up to three different materials by means of a scaled-up multiple ion cluster source, in a highly controlled ultra-high vacuum environment. Stardust has been designed to simulate the complex conditions of cosmic-dust formation and processing in the circumstellar region of evolved stars and supernova.

More information available at:

http://www.icmm.csic.es/nanocosmos
http://www.icmm.csic.es/esisna

Salary. The salary of the position is determined in accordance with the salary system of CSIC (Spain National Research Council) which amounts between €36.000/€40.000 gross in 14 instalments. In addition, funds for travel and allowance to conferences and workshops are covered up by the project.

‘Estrella’, a comic inspired by Nanocosmos

homepage-banner-estrella-1The first chapter of ‘Estrella’ is out!

‘Estrella’ is a comic developed by an ERC proyect called ERCcOMIC and inspired by Nanocosmos. As the comic team believes in the power of visual storytelling, they illustrate each in a concrete, memorable and engaging way, drawing inspiration from science through stories and images.

The story of ‘Estrella’, by the artist Lorenzo Palloni, is set in 2106, and mankind is radically evolving. The NANOCOSMOS project has changed the path of astrochemistry and astrophysics, and now is the time for an elderly Estrella Leroux to pass the torch to three young scientists. Yet the story of an impossible journey of a young Estrella as a child inside the “Stardust” (a groundbreaking machine that reproduces the processes of a dying star) calls everything into question. The three budding stargazers will discover that their destiny is bound up with the mysterious Estrella’s, on the border between a surprising past and a never-so-uncertain future!

Don’t miss the story of Estrella and enjoy!

DDaW0FiWsAE8_2c.jpg large

AROMA Setup First Results

The AROMA Setup

In the framework of the Nanocosmos ERC synergy project, a new analytical experimental setup called AROMA (Astrochemistry Research of Organics with Molecular Analyzer) was developed. The main purpose of this setup is to study and identify, with micro-scale resolution, the molecular content of cosmic dust analogues, including the stardust analogues that will be produced in the Nanocosmos Stardust machine in Madrid. AROMA combines laser desorption/ionization (LDI) techniques with a linear ion trap coupled to an orthogonal time of flight mass spectrometer (LQIT-oTOF). A first paper “Identification of PAH Isomeric Structure in Cosmic Dust Analogues: the AROMA setup” has just been published in The Astrophysical Journal. This is the first time that two-step LDI is coupled to a linear ion trap with MS/MS capabilities. In MS/MS experiments ions are first stored in a trap and then are fragmented under the action of photon or collision activation. The resulting fragments are then detected by mass spectrometry providing information on the molecular structure of the parent species.

The article presents the performances of AROMA with its ability to detect with very high sensitivity aromatic species in complex materials of astrophysical interest and characterize their structures. A two-step LDI technique was used, in which desorption and ionization are achieved using two different lasers which are separated in time and space. The tests performed with pure polycyclic aromatic hydrocarbon (PAH) samples have shown a limit of detection of 100 femto-grams, which corresponds to 2×108 molecules in the case of coronene (C24H12). We detected a mixture of PAH small and medium-sized PAHs in the Murchison meteorite that contains a complex mixture of extraterrestrial organic compounds. In addition, collision induced dissociation experiments were performed on selected species detected in Murchison, which led to the first firm identification of pyrene (C16H10) and its methylated derivatives in this sample.

AROMA setup, being highly sensitive, selective, spatially resolved, and owing the MS/MS capabilities enables unique chemical characterization of aromatic species in cosmic dust analogues and extraterrestrial samples. Changing the ionization source will enlarge the scope of investigated chemical species. In the future, it will be used to analyze samples from the Stardust machine, other laboratory analogues and cosmic materials such as meteorites, and interplanetary dust particles. Currently, we are developing an imaging source that will allow us to analyze samples using LDI with micrometer spatial resolution.

More information:

This research was presented in the paper “Identification of PAH Isomeric Structure in Cosmic Dust Analogs: The AROMA Setup“, published in the Astrophysical Journal (APJ), 843:34 (8pp), 2017 July 1.  The authors are Hassan Sabbah (Université de Toulouse, UPS-OMP, Institut de Recherche en Astrophysique et Planétologie (IRAP); CNRS, IRAP; LCAR, Université de Toulouse, UPS-IRSAMC, CNRS, France), Anthony Bonnamy (Université de Toulouse, UPS-OMP, IRAP; CNRS, IRAP, France), Dimitris Papanastasiou (Fasmatech Science + Technology, Greece), Jose Cernicharo (Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Spain), Jose-Angel Martín-Gago (ICMM-CSIC, Spain), and Christine Joblin (Université de Toulouse, UPS-OMP, IRAP; CNRS, IRAP, France).