Stardust machine

The Stardust machine is a beyond the state-of-the-art equipment that combines various techniques to achieve original studies on individual nanoparticles. These studies include their processing to produce complex molecules, the chemical evolution of their precursors and their reactivity with abundant molecules of astrophysical interest. The simulation chambers are equipped with state-of-the-art in situ and ex situ diagnostics.

Outstanding publications on our innovative development

INFRA-ICE: An ultra-high vacuum experimental station for laboratory astrochemistry (G. Santoro, J. M. Sobrado, G. Tajuelo-Castilla, M. Accolla, L. Martinez, J. Azpeitia, K. Lauwaet, J. Cernicharo, G. J. Ellis, J. A. Martín-Gago). Review of Scientific Instruments, 2020 December 1.

Prevalence of non-aromatic carbonaceous molecules in the inner regions of circumstellar envelopes (L. Martínez, G. Santoro, P. Merino, M. Accolla, K. Lauwaet, J. Sobrado, H. Sabbah, R. J. Peláez, V. J. Herrero, I. Tanarro, M. Agúndez, A. Martín-Jimenez, R. Otero, G. J. Ellis, C. Joblin, J. Cernicharo & J. A. Martín-Gago). Nature Astronomy, 2019 October 21.

Precisely controlled fabrication, manipulation and in-situ analysis of Cu based nanoparticles (L. Martínez, K. Lauwaet, G. Santoro, J. M. Sobrado, R. J. Peláez, V. J. Herrero, I. Tanarro, G. J. Ellis, J. Cernicharo, C. Joblin, Y. Huttel, and J. A. Martín-Gago). Scientific Reports 8, 7250 (13pp), 2018 May 8.

The Stardust machine
 The Stardust machine

More relevant information on our innovative set-up

Main features of the Stardust machine

The Stardust machine has been designed and assembled at the Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC). The elapsed time has been from October 2014 to the end of 2015. Throughout 2016, we entered into the commissioning phase with several ongoing verification experiments and processes. From mid-2017, we are dealing with the first astrophysical experiments, the so-called exploitation phase.

Stardust is basically a forefront facility to produce and analyze in-situ highly-controlled analogs of the dust grains in a versatile ultra-high-vacuum (UHV) experiment, up to pressures of 10-11 mbar. The ultimate goal is to reproduce the physical conditions that prevail in the photospheres of AGB stars. In this environment, we mimick the nucleation of the aggregates and their possible interaction with the circumstellar gases. Stardust characterizes microscopic processes (interaction with photons and gas) through surface science techniques. It encompasses 5 independent vacuum chambers, with their own instrumentation, pumping systems, gas-dosed systems in a highly-controlled UHV environment:

  • MICS (Multiple Ion Cluster Source) chamber. The MICS is a new optimized route for cluster growth of a standard technique based on a sputtering gas. It allows the formation of nanoparticles of controlled elemental composition by atomic aggregation. A special port has been adapted to perform optical spectroscopy.
  • NEON (NEutral to iON) chamber that separates neutral from ionized nanoparticles as well as a mass selection. It also accelerates, simulating the radiation pressure, and anneals the formed clusters.
  • INTERACTION chamber. Interaction and chemical reactions are induced between the generated nanoparticles and molecules in the gas phase (H2, CH4, C2H2, etc).
  • INFRA-ICE chamber. In-flight analysis is performed through UV, visible, near-mid and far-infrared spectroscopy. We have successfully integrated a cryostat and a sample manipulator to study ice interstellar analogs. Microwave spectroscopy will be performed with the new NANOCOSMOS mm broad band receivers to study second/minute time-dependent changes in the gas composition.
  • ANA chamber, the analysis chamber. This allows us to collect the nanoparticles and perform X-ray photoelectron spectroscopy (XPS), thermal desorption spectroscopy (TDS), Auger electron spectroscopy (AES) and Ultraviolet photoelectron spectroscopy (UPS) in-situ. Also some in-situ processing can be performed here. The collected samples are duly transported and delivered to the AROMA setup for ulterior analysis.

Check our posts on the Stardust machine:


Leave a Reply