Elegant and fast: the GACELA is running

The Gas Cell chamber

On June 7, 2019, a first paper on the GACELA (GAs CEll for Laboratory Astrophysics) experimental set-up is out at the “Astronomy & Astrophysics” journal (A&A, volume 626, A34, 2019).

More than 3 years have elapsed since the first designs were envisaged for this set-up. Finally, at the end of 2017, the chamber (see figure above) was delivered and successfully tested against leaks. On the other hand, the GACELA broad-band radio receivers (Q and W bands, 31.5–50 and 72–116.5 GHz, respectively) were successfully commissioned in the second semester of 2017 and interfaced with the GACELA set-up in February 2018. Several experimental runs were performed, showing high quality signal-to-noise ratio spectra of molecular species (CH3CN, CH3OH, CH4/N2, CH4/N2/CH3CN, etc).

As stated by the authors, GACELA has achieved an important milestone. It is the first time that we can observe the thermal emission of molecules with an instantaneous band width of 20 GHz in Q band and 3 × 20 GHz in W band for Laboratory Astrophysics. These rotational spectroscopy measurements are complemented by mass spectrometry and optical spectroscopy.

In summary, NANOCOSMOS has developed an elegant and fast-responding set-up, the GACELA, to provide high-resolution and high-sensitivity spectra of molecular species produced in cold plasmas or UV experiments.

More information:

This research was presented in the paper “Broad-band high-resolution rotational spectroscopy for laboratory astrophysics“, published in Astronomy and Astrophysics 626, A34 (29pp), 2019 June 7. The authors are: José Cernicharo (Instituto de Física Fundamental, IFF-CSIC), Juan D. Gallego (Centro de Desarrollos Tecnológicos, Observatorio de Yebes, IGN), José A. López-Pérez (CDT, OY, IGN), Félix Tercero (CDT, OY, IGN), Isabel Tanarro (Instituto de Estructura de la Materia, IEM-CSIC), Francisco Beltrán (CDT, OY, IGN), Pablo de Vicente (CDT, OY, IGN), Koen Lauwaet (Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC & IMDEA Nanociencia), Belén Alemán (ICMM-CSIC & IMDEA Materiales), Elena Moreno (IFF-CSIC), Víctor J. Herrero (IEM-CSIC), José L. Doménech (IEM-CSIC), Sandra I. Ramírez (Centro de Investigaciones Químicas, UAEM, Mexico), Celina Bermúdez (IFF-CSIC), Ramón J. Peláez (IEM-CSIC), María Patino-Esteban (CDT, OY, IGN), Isaac López-Fernández (CDT, OY, IGN), Sonia García-Álvaro (CDT, OY, IGN), Pablo García-Carreño (CDT, OY, IGN), Carlos Cabezas (IFF-CSIC), Inmaculada Malo (CDT, OY, IGN), Ricardo Amils (CDT, OY, IGN), Jesús Sobrado (Centro de Astrobiología, INTA-CSIC), Carmen Díez-González (CDT, OY, IGN), José M. Hernández (IFF-CSIC/CDT, OY, IGN), Belén Tercero (CDT, OY, IGN), Gonzalo Santoro (ICMM-CSIC), Lidia Martínez (ICMM-CSIC), Marcelo Castellanos (IFF-CSIC), Beatriz Vaquero-Jiménez (CDT, OY, IGN), Juan R. Pardo (IFF-CSIC), Laura Barbas (CDT, OY, IGN), José A. López-Fernández (CDT, OY, IGN), Beatriz Aja (Universidad de Cantabria), Arnulf Leuther (Fraunhofer Institut fur Angewandte Festkorperphysik, Germany), José A. Martín-Gago (ICMM-CSIC).

The GACELA experimental set-up is located at the Centro de Desarrollos Tecnológicos, Observatorio de Yebes, thanks to a bilateral agreement between CSIC and IGN for the development of the NANOCOSMOS project.

AROMA Setup First Results

The AROMA Setup

In the framework of the Nanocosmos ERC synergy project, a new analytical experimental setup called AROMA (Astrochemistry Research of Organics with Molecular Analyzer) was developed. The main purpose of this setup is to study and identify, with micro-scale resolution, the molecular content of cosmic dust analogues, including the stardust analogues that will be produced in the Nanocosmos Stardust machine in Madrid. AROMA combines laser desorption/ionization (LDI) techniques with a linear ion trap coupled to an orthogonal time of flight mass spectrometer (LQIT-oTOF). A first paper “Identification of PAH Isomeric Structure in Cosmic Dust Analogues: the AROMA setup” has just been published in The Astrophysical Journal. This is the first time that two-step LDI is coupled to a linear ion trap with MS/MS capabilities. In MS/MS experiments ions are first stored in a trap and then are fragmented under the action of photon or collision activation. The resulting fragments are then detected by mass spectrometry providing information on the molecular structure of the parent species.

The article presents the performances of AROMA with its ability to detect with very high sensitivity aromatic species in complex materials of astrophysical interest and characterize their structures. A two-step LDI technique was used, in which desorption and ionization are achieved using two different lasers which are separated in time and space. The tests performed with pure polycyclic aromatic hydrocarbon (PAH) samples have shown a limit of detection of 100 femto-grams, which corresponds to 2×108 molecules in the case of coronene (C24H12). We detected a mixture of PAH small and medium-sized PAHs in the Murchison meteorite that contains a complex mixture of extraterrestrial organic compounds. In addition, collision induced dissociation experiments were performed on selected species detected in Murchison, which led to the first firm identification of pyrene (C16H10) and its methylated derivatives in this sample.

AROMA setup, being highly sensitive, selective, spatially resolved, and owing the MS/MS capabilities enables unique chemical characterization of aromatic species in cosmic dust analogues and extraterrestrial samples. Changing the ionization source will enlarge the scope of investigated chemical species. In the future, it will be used to analyze samples from the Stardust machine, other laboratory analogues and cosmic materials such as meteorites, and interplanetary dust particles. Currently, we are developing an imaging source that will allow us to analyze samples using LDI with micrometer spatial resolution.

More information:

This research was presented in the paper “Identification of PAH Isomeric Structure in Cosmic Dust Analogs: The AROMA Setup“, published in the Astrophysical Journal (APJ), 843:34 (8pp), 2017 July 1.  The authors are Hassan Sabbah (Université de Toulouse, UPS-OMP, Institut de Recherche en Astrophysique et Planétologie (IRAP); CNRS, IRAP; LCAR, Université de Toulouse, UPS-IRSAMC, CNRS, France), Anthony Bonnamy (Université de Toulouse, UPS-OMP, IRAP; CNRS, IRAP, France), Dimitris Papanastasiou (Fasmatech Science + Technology, Greece), Jose Cernicharo (Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Spain), Jose-Angel Martín-Gago (ICMM-CSIC, Spain), and Christine Joblin (Université de Toulouse, UPS-OMP, IRAP; CNRS, IRAP, France).

NANOCOSMOS on top: Press releases from Nature´s “Compression and ablation of the photo-irradiated molecular cloud the Orion Bar”

The paper “Compression and ablation of the photo-irradiated molecular cloud the Orion Bar” (Goicoechea et al. 2016) recently published in Nature, has put Astrochemistry and NANOCOSMOS in the leading edge forefront of many research institutIons, newspapers and mass media. A few examples can be found below:

ESO Picture of the week

CSIC

L´Observatoire de Paris

Institut de Radioastronomie Millimétrique (IRAM)

Institut de Recherche en Astrophysique et Planétologie (IRAP)

ALMA news

El Mundo newspaper

ABC newspaper

La Vanguardia newspaper

El diario newspaper

 

ECLA 2016 – webpage open

Ecla2016-1125x510

The second announcement of the European Conference on Laboratory Astrophysics – “Gas on the Rocks” – ECLA 2016 has been issued today.  This conference will be held at the CSIC headquarters (Madrid, Spain) in November 21 – 25, 2016. The webpage is open with all the relevant information.

www.ecla2016.com

More than 30 invited researchers will address new insights on the following science topics:

  • Comets, asteroids, meteorites and the primitive Solar System nebula: formation and evolution
  • Protoplanetary disks and planet formation
  • Planet, Moon, and exoplanet surfaces and atmospheres
  • The signatures of the evolving interstellar medium
  • Dense Clouds: the gas-ice interface and molecular complexity
  • Chemical fingerprints of star formation
  • The late stages of star evolution: dust formation
  • Supernovae and shocks: high-energy processing of matter

NANOCOSMOS will organize the ECLA2016 – Gas on the Rocks conference

Stardustiram_PdV

The European Conference on Laboratory Astrophysics – Gas on the Rocks (ECLA2016) will be held at the CSIC headquarters in Madrid on November 21 – 25, 2016.

The conference will address the state of the art in laboratory astrophysics within the context of new astrophysical data and to improve communication and collaboration between astrophysicists, physicists and (geo) chemists. Hence, the conference structure will consist of invited talks presenting topics in astrophysics and planetary science and related laboratory astrophysics activities. Contributing talks will be selected to complement the topics from the astrophysical, laboratory, and theoretical/modeling points of view.

More info here