Carbon grains around evolved stars

The Nanocosmos team published in October 21, 2019, at Nature Astronomy (available free at Europe PubMed Central), the results of a set of laboratory experiments showing that gas-phase chemistry, under conditions similar to those of a red giant star environment, can produce very efficiently small amorphous carbon grains and carbon chains similar to those found in oil.

Stardust, an ultra-high vacuum machine built in the ERC Nanocosmos project (a Synergy project funded by the European Research Council), was specifically conceived to simulate, with a high level of control, the complex conditions of stardust formation and processing in the environment of evolved stars. In addition, the AROMA setup was built to analyse the molecular content of the samples synthesized by Stardust.

In the words of José Ángel Martín-Gago (Institute of Materials Science of Madrid, ICMM-CSIC, Spain), responsible for the Stardust instrument, “Mimicking the conditions of the envelope of an evolved star, laboratory experiments allow scientists to follow, step by step, the formation process of dust grains, from atoms to simple molecules and their growth to more complex clusters of molecules.”

For José Cernicharo (Institute of Fundamental Physics, IFF-CSIC, Spain), lead co-investigator of the project together with Martín-Gago and Christine Joblin (Institut de Recherche en Astrophysique et Planétologie, IRAP-CNRS, France), “That process is important because those grains of dust, which emerge from the final stages of the evolution of medium-sized stars like our Sun will provide the fundamental pieces needed for the birth of the planets and the main ingredients for the onset of life once injected into the interstellar medium.”

This is why it is essential to develop experiments combining laboratory astrophysics, surface science and astronomical observations to unveil the chemical routes that operate in the inner layers of the envelope of evolved stars.

The results obtained show the formation of amorphous carbon nanograins and aliphatic carbon clusters with traces of aromatic species and no fullerenes. This shows that the latter species cannot form effectively by gas-phase condensation at these temperatures in the zone of the evolved star where the dust is formed, a region that extends up to a few stellar radii.

Chemical complexity

Carbon dust analogues were produced in Stardust and analysed with several characterization techniques including Scanning Tunneling Microscopy and mass spectrometry with the AROMA setup. To produce them only gas carbon atoms and molecular hydrogen were used in a ratio close to that in the atmospheres of AGB stars.

The results showed two types of products: amorphous carbonaceous nanograins – the most abundant, considered to be the main component of carbonaceous star dust – and aliphatic carbon groups. But almost no aromatic molecules were found in the analysis.

According to Joblin, “Polycyclic aromatic hydrocarbons (PAHs) are widespread in massive star-forming regions and in carbon-rich protoplanetary and planetary nebulae. Large carbonaceous molecules like buckminsterfullerene C60 have also been detected in some of these environments. But it seems that they need different conditions to be formed”.

One possible pathway could be through thermal processing of aliphatic material on the surface of dust, which could take place as a result of the significant rise in the temperature of nanograins that occurs in highly UV-irradiated environments. Those results give us new insights into the chemistry of carbonaceous stardust seed formation and foster new observations in order to constrain the physical and chemical conditions in the inner shells of the envelops of evolved stars.

About the ERC

The European Research Council, set up by the European Union in 2007, is the premier European funding organisation for excellent frontier research. Every year it selects and funds the very best, creative researchers of any nationality and age to run projects based in Europe. The ERC has three grant schemes for individual principal investigators – Starting Grants, Consolidator Grants, and Advanced Grants – and Synergy Grants for small groups of excellent researchers.

To date, the ERC has funded more than 9,000 top researchers at various stages of their careers, and over 50,000 postdoctoral fellows, PhD students and other staff working in their research teams. The ERC strives to attract top researchers from anywhere in the world to come to Europe.

The ERC is led by an independent governing body, the Scientific Council. The ERC current President is Professor Jean-Pierre Bourguignon. The ERC has an annual budget of €2 billion for the year 2019. The overall ERC budget from 2014 to 2020 is more than €13 billion, as part of the Horizon 2020 programme, for which European Commissioner for Research, Innovation and Science Carlos Moedas is currently responsible.

NANOCOSMOS at the Guillermo Haro School on Molecular Astrophysics (Puebla, Mexico)

Prof. José Cernicharo has been awarded with the Guillermo Haro Visiting Professorship 2016 at the Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE, posterGH16Puebla, Mexico). Following this award, INAOE has organized the Guillermo Haro School on Molecular Astrophysics (October 11 – 21, 2016). Several NANOCOSMOS scientists (Asunción Fuente from CNIG-IGN, Nuria Marcelino, José Pablo Fonfría and Luis Velilla from ICMM-CSIC) will give lectures on the following topics:

  • Molecular Astrophysics, Spectroscopy, Chemistry in the ISM (José Cernicharo)
  • Physical and chemical processes in the ISM, Protoplanetary disks (Asunción Fuente)
  • Observational methods and interpretation (Nuria Marcelino)
  • Molecular excitation and radiative transfer, Circumstellar medium (José Pablo Fonfría)
  • Chemistry in the circumstellar medium, atmospheric  effects and calibration (Luis Velilla)

José Cernicharo will give a public talk in Puebla downtown on Thursday 13: “Moléculas en el espacio: Astroquímica”.

ECLA 2016 – webpage open

Ecla2016-1125x510

The second announcement of the European Conference on Laboratory Astrophysics – “Gas on the Rocks” – ECLA 2016 has been issued today.  This conference will be held at the CSIC headquarters (Madrid, Spain) in November 21 – 25, 2016. The webpage is open with all the relevant information.

www.ecla2016.com

More than 30 invited researchers will address new insights on the following science topics:

  • Comets, asteroids, meteorites and the primitive Solar System nebula: formation and evolution
  • Protoplanetary disks and planet formation
  • Planet, Moon, and exoplanet surfaces and atmospheres
  • The signatures of the evolving interstellar medium
  • Dense Clouds: the gas-ice interface and molecular complexity
  • Chemical fingerprints of star formation
  • The late stages of star evolution: dust formation
  • Supernovae and shocks: high-energy processing of matter

NANOCOSMOS will organize the ECLA2016 – Gas on the Rocks conference

Stardustiram_PdV

The European Conference on Laboratory Astrophysics – Gas on the Rocks (ECLA2016) will be held at the CSIC headquarters in Madrid on November 21 – 25, 2016.

The conference will address the state of the art in laboratory astrophysics within the context of new astrophysical data and to improve communication and collaboration between astrophysicists, physicists and (geo) chemists. Hence, the conference structure will consist of invited talks presenting topics in astrophysics and planetary science and related laboratory astrophysics activities. Contributing talks will be selected to complement the topics from the astrophysical, laboratory, and theoretical/modeling points of view.

More info here

 

NANOCOSMOS at the recent ALMA / Herschel Archival Workshop (Garching, Germany)

alma_herschel_low_resFour NANOCOSMOS researchers gave their presentations at the ALMA/Herschel Archival Workshop held in Garching (Germany) at the ESO headquarters in April 15 -17, 2015. José Cernicharo (NANOCOSMOS Corresponding P.I.) talked about the synergies between the ALMA high resolution observations in the innermost zones of star-forming regions, AGB, post-AGBs stars and extragalactic objects and those of Herschel´s archive submillimeter and far-IR observations. Our postdoctoral researchers, Marcelino Agúndez, Guillermo Quintana-Lacaci and Belén Tercero talked about the following topics: Continue reading →

NANOCOSMOS workshops/meetings

2017

NANOCOSMOS Interstellar Dust Meeting

Date: 12 – 13 June 2017

Place: Université Paul Sabatier (Toulouse, France)

Key dates: 

Abstract submission deadline: April 30th, 2017

Registration deadline: May 14th, 2017

Webpage: https://epolm3-nanocosm.sciencesconf.org/

2016

European Conference on Laboratory AstrophysicsGas on the Rocks (ECLA2016)

Outcome of the conference: See “A summary of the ECLA2016” link

November 21 – 25, 2016 (CSIC Headquarters, Madrid, Spain)

Webpage: ECLA2016

FIRST ANNOUNCEMENT

Key dates:
Second announcement:  February 1st, 2016 (opening of the conference web page).
Deadline for abstract submission: June 15, 2016
Deadline for early registration: July 15, 2016
Deadline for information participants about selected contributing talks: June 30, 2016
Final program: July 15, 2016
Last announcement with final details: November 1st, 2016

Motivation:

Over the last decade, European research activities in the field of laboratory astrophysics have experienced an impressive increase in their potential to address astrophysical problems, in particular by providing essential information on the physical and chemical processes leading to chemical complexity in space resulting in star and planet formation. These activities have been motivated by the interpretation of astronomical observations obtained with single dish telescopes and short baseline interferometers. The wealth of data obtained with ALMA, space facilities (Herschel, Spitzer, Rosetta, the coming JWST, E-ELT), and other ground based observatories (VLTI, NOEMA, …), require new methodologies for the astrophysical modeling that will lead to new challenges for laboratory astrophysics.

This conference aims to address the state of the art in laboratory astrophysics within the context of these new astrophysical data and to improve communication and collaboration between astrophysicists, physicists and (geo) chemists. Hence, the conference structure will consist of invited talks presenting topics in astrophysics and planetary science and related laboratory astrophysics activities. Contributing talks will be selected to complement the topics from the astrophysical, laboratory, and theoretical/modeling points of view.

The astrophysical areas that will be addressed are:

Comets, asteroids, meteorites and the primitive Solar System nebula: formation and evolution
Protoplanetary disks and planet formation
Planet, Moon, and exoplanet surfaces and atmospheres
The signatures of the evolving interstellar medium
Dense Clouds: the gas-ice interface
Chemical fingerprints of star formation
The late stages of star evolution: dust formation
Supernovae and shocks: high-energy processing of matter

The conference will cover studies in many fields such as spectroscopy, analytical (geo) chemistry, reactivity, nanoscience, and quantum chemistry, pertaining to different matter components (gas, plasma, PAHs, ices, dust, solid surfaces, …).

SOC composition
Jose Cernicharo (chair). ICMM-CSIC, Madrid, Spain
Christine Joblin (co-chair). IRAP, Univ. Paul Sabatier/CNRS, Toulouse, France
Isabel Tanarro. IEM-CSIC, Madrid, Spain
Jose Angel Martín Gago. ICMM-CSIC, Madrid, Spain
Karine Demyk. IRAP, Univ. Paul Sabatier/CNRS, Toulouse, France
Jean-Hugues Fillion. LERMA, UPCM Univ.  Paris 06, & Obs. Paris, France
Maria Elisabetta Palumbo. INAF-Catania Astrophysical Obs., Italy
André Canosa. IPR, Univ. Rennes 1/CNRS, France
Harold Linnartz. Leiden Obs., Univ. of Leiden, The Netherlands
Liv Hornekaer. iNANO, Aarhus Univ., Danemark
Peter Sarre. School of Chemistry, Nottingham Univ., UK
Stephan Schlemmer. Phys. Inst., Univ. Koln, Germany
Jonathan Tennyson. Univ. College London, UK
Yves Marrochi. CRPG-CNRS, Nancy, France
Guillermo Muñoz Caro. CAB, INTA-CSIC, Madrid, Spain

LOC composition
Isabel Tanarro (Chair). IEM-CSIC, Madrid, Spain
Belén Maté. IEM-CSIC, Madrid, Spain
Víctor J. Herrero. IEM-CSIC, Madrid, Spain
José Luis Doménech. IEM-CSIC, Madrid, Spain
Ángel González-Valdenebro. IEM-CSIC, Madrid, Spain
Marcelo Castellanos (co-chair). ICMM-CSIC, Madrid, Spain
Belén Tercero.  ICMM-CSIC, Madrid, Spain
Juan Ramón Pardo. ICMM-CSIC, Madrid, Spain
Juan Antonio Corbalán. ICMM-CSIC, Madrid, Spain
Natalia Ruiz-Zelmanovich. ICMM-CSIC, Madrid, Spain

The project

idea

Cosmic dust is made in evolved stars. However, the processes involved in the formation and evolution of dust remain so far unknown. NANOCOSMOS will take advantage of the new observational capabilities (increased angular resolution) of the Atacama Large Millimeter/submillimeter Array (ALMA) to unveil the physical and chemical conditions in the dust formation zone of evolved stars. These observations in combination with novel top-level ultra-high vacuum experiments and astrophysical modelling will provide a cutting-edge view of cosmic dust.