Fragmentation of hydrocarbons by collision. AGAT@ANDROMEDE. T. Id barkach^{1*}, M. Chabot¹, K. Béroff², S. Diaz-Tendero³ ¹Institut de physique nucléaire d'Orsay (IPNO), CNRS-IN2P3, Univ. Paris Sud, F-91406 Orsay, France ²Institut des sciences moléculaires d'Orsay (ISMO), CNRS-IN2P3, Univ. Paris Sud, F-91406 Orsay, France ³Departamento de Quimica, Modulo 13, Universidad Autonoma de Madrid, 28049 Madrid, Spain *idbarkach@ipno.in2p3.fr We are studying hydrocarbons ions produced in high velocity (3-4 u.a.) collisions between CH_n^+ cations and Helium atoms. The experiment was done using the AGAT silicon multidetector and the ANDROMEDE accelerator. During the collision those hydrocarbons gain some energy and release this energy by doing fragmentation. Thanks to experimental developments on the fragmentation system, all fragments neutral or charged are separately identified, allowing to resolve all fragmentation channels. Therefore, we have been able to measure fragmentation branching ratios for CH_n^{q+} (n=0-4 and q=0-3). We also constructed semi-empirical breakdown curves¹ (BDC) for CH_n^{q+} using experimental BR and results of statistical fragmentation theory². These BDC, which are energy dependent dissociation branching ratios (BR) curves, will be used to predict branching ratios for various processes leading to CH_n^{q+} excited adducts. These processes of astrochemical interest are photonic processes, electronic processes and chemical reactions. Figure 1: BDC for the reactive intermediate CH₂* **Acknowledgments:** This work has the support of CNRS program Physique et Chimie du Milieu Interstellaire (PCMI) co-funded by the Centre National d'Etudes Spatiales (CNES) and of the P2IO LabEx (ANR-10-LABX-0038). ## References - [1] M. Chabot, The astrophysical journal 2013, 771, article id. 90. - [2] Juan P. Sanchez, The journal of physical chemistry 2016, 120, 588-605.