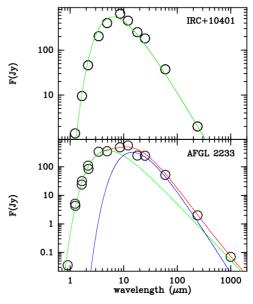
On the existence of C-rich massive evolved stars

G. Quintana-Lacaci^{1*}, J. Cernicharo¹, M. Agúndez¹, J.P. Fonfría¹, L. Velilla-Prieto², C. Sánchez Contreras³, V. Bujarrabal⁴, A. Castro Carrizo⁵, J. Alcolea⁶

¹Group of Molecular Astrophysics, IFF-CSIC, C/Serrano 123, E-28006, Madrid, Spain ²Dept. of Space, Earth and Environment, Chalmers Univ. of Technology, Onsala Space Observatory, 43992, Onlsala, Sweden


³Centro de Astrobiología (CSIC-INTA), ESAC, Camino bajo del castillo s/n, Urb. Villafranca del Castrillo, E-28691, Villanueva de la Cañada, Spain

⁴Observatorio Astronómico Nacional (IGN), Ap. 112, 28803, Alcalá de Henares, Spain ⁵Institute de RadioAstronomie Millimétrique, 300 rue de la Piscine, 38406, Sant Martin d'Héres, France ⁶Observatorio Astronómico Nacional (IGN), Alfonso XII, 28014, Madrid, Spain

*Corresponding author e-mail adress: guillermo.q@csic.es

We studied the properties of a particular type of evolved stars, the C-rich evolved stars with high expansion velocities (HVC stars). For this purpose we selected the two best studied objects within this group, IRC +10401 and AFGL 2233. We obtained an estimate of their luminosity by studying their spectral energy distribution. Also we have obtained single-dish line profiles and interferometric maps of the CO J=1-0 and J=2-1 emission lines for both objects, as well as a λ 3 and 1mm line survey toward IRC+10401 to study their molecular census. We have modeled the CO emission using a LVG radiative transfer code to determine the kinetic temperature and density profiles of the gas ejected by these stars. We have found that the luminosities obtained for these objects ($log(L/L_{\odot}) = 4.1 \& 5.4$) locate them in the domain of the massive Asymptotic Giant Branch stars (AGBs) and the Red Supergiant stars (RSGs). In addition, the mass-loss rates obtained (1.5 \times 10 $^{-5}$ – 6 \times 10 $^{-3}$ M_{\odot} yr $^{-1}$) suggest that while IRC +10401 might be an AGB star, AFGL 2233 could be a RSG star. These results, together with those from previous works, suggest that both objects are massive objects, IRC +10401 a massive evolved star with $M_{\rm init} \sim 5-9 M_{\odot}$ which could correspond to an AGB or a RSG, and AFGL 2233 a RSG with $M_{\rm init} \sim 20 M_{\odot}$. This would confirm the existence of massive C-rich evolved stars. Finally, two scenarios are proposed to form these types of objects. The existence of these objects has a direct effect on the nucleosynthesis models in the composition of the ejecta and therefore on the composition of the dust injected into the ISM.

Acknowledgments: The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant § Agreement n. 610256 (NANOCOSMOS). We would also like to thank the Spanish MINECO for funding support from grants CSD2009-00038, 32032, AYA2016-75066-C2-1-P & AYA2016-78994-P. M.A. also thanks for funding support from the Ramón y Cajal programme of Spanish MINECO (RyC-2014-16277). This work has made use of data from the Space Agency (ESA) mission European (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national

institutions, in particular the institutions participating in the Gaia Multilateral Agreement.