ALMA/IRAM observations

HighlightsFeaturesDescription
Discovery of molecular species in IRC+10216Methyl silane (CH3SiH3) and silyl cyanide (SiH3CN, first time in Space)We propose a formation mechanism through catalytic reactions on the surface of dust grains by hydrogenation of silicon-carbon species in the inner dust formation zone
Formation of SiC dust in C-rich AGBsSiC2, CS, SiO and SiS gas-phase precursors of dustDecline in the abundances of these molecular species with increasing density in the envelopes of C-rich AGB stars. Important constraints for Stardust experiments on SiC dust formation.
Formation of dust in O-rich AGBsSiO and SO gas-phase precursors of dustDecline in the abundances of these molecular species with increasing density in the envelopes of O-rich AGB stars
Discovery of molecular species in the Interstellar Medium7 molecules, including one protonated form and isotopologs (2 of them, first time in Space)See dedicated descriptions below (under construction)
Major NANOCOSMOS highlights in “ALMA/IRAM observations” (see dedicated descriptions below)

NANOCOSMOS has performed several key observations of the circumnuclear envelopes -CSEs- of AGB stars with the IRAM 30m radio telescope and the ALMA interferometer. These observations are mandatory to foster the study of the gas-phase precursors of dust in these envelopes. We have made fruitful efforts in the study of the Si-C chemistry in these objects.

NANOCOSMOS has discovered methyl silane, CH3SiH3 and silyl cyanide (SiH3CN) in the envelope of the C-rich AGB star IRC +10216. We suggest that both are formed in the inner zones of the circumstellar envelope through catalytic reactions on the surface of dust grains by hydrogenation of silicon-carbon species.

We have also performed two molecular surveys with the IRAM facility, one to study the envelopes of 25 C-rich AGB stars to search for emission lines of SiC2, SiC, Si2C, CS, SiO and SiS and another one with a sample of 30 O-rich AGB stars to investigate the potential role of SiO, CS, SiS, SO, and SO2 in the formation of dust in these environments.

Our results show strong evidences that the observed decline in the molecular abundances of these species with increasing density in the envelopes are due to their incorporation to the solid phase. Furthermore, we establish that SiC2, CS, SiO and SiS (tentatively) are very likely gas-precursors of SiC dust in C-rich envelopes of AGB stars and SiO and SO (tentatively) in O-rich AGB stars.

Finally, the team has detected 7 molecules in the Interstellar Medium, some of them of key importance to constrain chemical models. These are the c-C3D isotopologs, the metastable and polar isomer isocyanogen (CNCN), the isocyanate radical NCO, the thioformyl radical (HCS) and its metastable isomer HSC, all of them in the dark cold cloud core L483, which contains a low-mass protostar. We have also detected ethyl formate (CH3CH2OCOH) and NS+ in the young protostellar system Barnard 1b with ALMA and IRAM respectively.